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Abstract 
A major challenge in developing robotic applications for 
real-world problems is that many domains include tight 
resource and temporal constraints coupled with uncertainty 
in how much resource and time will be required to perform a 
task.  We have developed the CLEaR framework to address 
this challenge.  CLEaR unifies the planning and execution 
processes to increase the responsiveness of a robotic agent 
operating in these types of environments.  This unified 
approach is realized by extending the traditional three-tier 
robotic control architecture with an Execution-Time Plan 
Manager, an Atomic Resource Manager (ARM) and an 
Execution-Time Query (ETQ) capability.  Through the 
interaction of these components, CLEaR is able to (1) reduce 
the need to replan, (2) detect the need to replan earlier, and 
(3) replan before entering a failed state. 

Introduction 
Robotic agents performing under hard resource and time 
constraints in uncertain environments require careful 
balancing of both deliberative and reactive reasoning 
[Knight, et al, 2001].  As in most domains with uncertainty, 
a task may fail or produce unexpected results leading to plan 
failures.  If the robot is also under hard time deadlines and 
resource constraints, a task requiring a different time or 
resource allocation than planned could cause failure at 
future points in the plan.  In some cases, the robot may be 
able to retry a failed task, use more time or take up more of 
a resource without causing a problem.   

Consider for example, a Mars exploration rover that must 
pick up a rock.  If it fails on its first attempt, it may want to 
try again.  However, doing so could lead to other problems 
at later stages of the plan.  If the rover spends too much time 
trying to complete this task, it may miss another deadline, 
such as taking an image while the sun is in a particular 
position in the sky.  Or, it may use up too much of some 
resource, such as energy, resulting in the inability to perform 
other critical tasks.  The challenge is to determine whether 
or not a change in time or resource usage will cause a 
problem so that the rover can take appropriate action, and to 
identify and fix the conflicts in the plan without preventing 
the rover from meeting other deadlines.  In this example, a 
deliberator is used to project current resource and time 
usage into the future, detect problems and make repairs.  An 
executive uses more reactive reasoning to deal with 
unexpected events and perform low-level control.  The rover 
needs both of these capabilities to successfully operate in 
this environment. 

Most of the robotic applications in the literature have not 
been confined by hard resource constraints and strict time 
deadlines; consequently little work has been done in this 
area.  However, there has been a growing awareness of these 
issues in recent years.  At NASA, almost all the robotic 
space exploration domains involve uncertain environments 
with deadlines and tight resource constraints.  

In pursuit of developing high-level control software 
capable of addressing these issues, we have developed the 
CLEaR (Closed Loop Execution and Recovery) control 
software/framework.  CLEaR provides a unified framework 
for performing planning, scheduling and execution by 
balancing both deliberative and reactive reasoning.  In most 
related approaches to robotic control, the planning and 
execution components are treated as black box functions 
that do not interact in real-time.  Our approach differs in that 
both the planning and execution functionalities share the 
responsibility for decision-making and resource 
management. 

In our system the unified planning and execution 
responsibilities are realized through three means of 
increased interaction and information sharing between the 
deliberative and reactive functions: 

1. The executive provides soft-real-time state, 
resource and time updates enabling the deliberator 
to anticipate problems and replan if necessary.  

2. The deliberator provides rapid response to queries 
about time and resource usage variations, thus 
enabling the executive to manage a task that is 
behaving unexpectedly.  

3. The executive uses execution time resource 
knowledge combined with projected usages while 
managing tasks.  

By enabling the long-term deliberation and the short-term 
reactive execution functionalities to share information on a 
more frequent basis, the system can: (1) reduce the need to 
replan, (2) detect the need to replan earlier and (3) replan 
while continuing to execute valid portions of the plan 
without entering a failed state. In other words, the system 
can circumvent as many failure situations as possible 
without impacting plan execution. By achieving these 
capabilities we are able to produce a robotic agent control 
system capable of goal-based commanding in an uncertain 
environment while adhering to hard resource and time 
constraints.  

Our framework for balancing deliberation and reaction 
has been motivated by several NASA space exploration 



domains.  The most significant influence has been Mars 
surface exploration with autonomous rovers, especially the 
proposed Mars Smart Lander mission.  In the next section 
we will describe this mission and illustrate how the mission 
provides challenging time and resource constraints for an 
autonomous robot.  We will describe how we have designed 
CLEaR to deal with these types of challenges and then 
present a case study illustrating how CLEaR will enable a 
rover to successfully deal with these challenges. 

2009 Mars Smart Lander Rover scenario  
In 1997, JPL successfully completed the first mission to 

explore Mars’ surface with a mobile robotic platform 
(Sojourner rover).  During the mission, human ground teams 
performed nearly all deliberative decision-making including 
the determination of resource bounds.  While the mission 
was a landmark in space exploration and provided valuable 
science data, it required intensive human interaction and 
explored a very small region of terrain. 

In 2009, JPL plans to send another mobile robotic 
platform to Mars to perform numerous geological surface 
experiments.  This mission is currently called the Mars 
Smart Lander mission and represents a significant increase 
in scale with respect to mission duration, science return and 
terrain covered.  Figure 1 provides an overview of the 
mission.  The mission objectives are to explore the landing 
site and make long-range traverses to two additional 
geological science locations where the robot will perform 
more science data gathering.  The rover will have limited 
resources, such as power and RAM, to complete these goals.  
It will also be under tight time constraints in order to 
complete the ambitious objectives and meet mission 
requirements, such as ground communication windows. 

There will be communication with Earth at the beginning 
and the end of each Martian day.  In the morning session, 
the goals for the day are uploaded to the rover and 
additional data will be down-linked.  In the evening, the 
day’s data is down-linked.  This data includes panoramic 
images used in selecting future goals.  

This scenario has two modes of operation..  The first 
being the geological science location operations, and the 
second being the long-range traverses between those 
locations.  During the first mode, the role of high-level 
autonomy software will primarily involve resource 
management (mainly power, memory and time) and robust 
execution.   

During the second mode, the rover is expected to make 
long-range traverses averaging 600m/day.  This distance is 
well beyond the “line of sight” of the ground operations 
team based on images down-linked from the previous day. 
Therefore the traverse will require significant onboard 
autonomy. Further motivating the need for high-level goal-
based autonomy is that the rover should perform as much 
opportunistic traverse science as possible without impacting 
the progress of the 3km long-range traverses. 

Unified Planning and Execution Framework 
Current practice for rover operations, as used on the 
Pathfinder mission [Mishkin, et al, 1998] and planned for 
the upcoming 2003 Mars Exploration Rover (MER) 
mission, is to perform nearly all decision making remotely 
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Figure 1: Mars Smart Lander Scenario 

 

rom earth. When the rover encounters a situation that 
eviates from its uploaded command sequence, the fault 
rotection software will attempt to resolve the problem. 
ailing that, the rover enters safe-mode and must: wait for a 
ommunications opportunity, transmit the state of the rover 
nd imagery of the environment back to Earth, and wait for 
 new command sequence.  Depending on when the next 
ommunication window is scheduled, this can waste 
onsiderable time.  Further, to date these rovers have been 
olar powered and can only perform major functions for a 
ew hours per day (typically 4-6 hours). Placing the rover in 
afe-mode can easily cause the loss of a full day of 
perations.  Because the mission cannot be extended, falling 
ehind schedule due to execution failures results in reduced 
cience return.   

While this style of operations reduces development cost 
nd simplifies testing of flight control software, it adds to 
he time and cost of mission operations. This, in turn,  
everely limits the rover’s in-situ capabilities.   

From an automation standpoint part of what limits rover 
perations performance is that the decision-making process 
as traditionally been separated from the execution process. 
o address this several systems have colocated the 
eliberative-planning and execution capabilities, to 
ramatically increase the rover’s responsiveness and reduce 
he need for the rover to be put into safe-mode.  

Most of these systems can be classified as three-tiered 
ontrol architectures [Gat 1998].  Under a three-tiered 
ystem the deliberative planning and reactive execution 
omponents are colocated but tend to function 
ndependently typically in a black-box integration. These 
rchitectures get their name from a stack-like partitioning of 
he system into three functional components. The top tier 
rovides deliberative function, the middle tier performs 
eactive execution, and the bottom interfaces to the 
ardware controllers. Generally, the higher up in the stack, 
he greater the level of abstraction at which the components 
unctions and the longer it takes to perform. The top tier is 
sually reserved for search algorithms. In the event of an 
xecution failure, when compared to Earth-based 
eliberation, this approach can reduce the time the rover 
aits for ground intervention by facilitating replanning 
nboard.  

While some systems will plan for future phases of a 
ission during the execution of the current phase. One 

rawback of many traditional three-tiered1 approaches is 
                                                
 Not all three-tiered architectures are limited by Sense-Plan-Act(SPA), for 
nstance ATLANTIS [Gat 1992] plans and executes asynchronously. 



 

that they do not instigate replanning prior to an execution 
failure of the mission phase currently being executed. In 
order to replan and thus preempt execution failures, it is 
necessary to provide the deliberator with frequent state, 
resource and temporal updates. These can then be 
propagated through the plan to predict future 
inconsistencies. If the deliberator is able to incrementally 
resolve these conflicts2 while executing valid portions of the 
plan, then the robotic agent will be more responsive to 
unexpected events. We refer to this capability as continuous 
planning. 

In our implementation of this framework, we use 
CASPER (Continuous Activity Scheduling Planning 
Execution and Replanning) as the continuous planner 
[Chien, et al, 2000a, 2000b]. CASPER provides the 
Deliberator and Execution-Time Plan Manager components 
depicted in Figure 2.  The Executive component is provided 
by TDL (Task Description Language), a robust task level 
execution framework [Simmons, Apfelbaum 1998]. 

The CLEaR framework is distinct from other three-tier 
architectures because it provides increased interaction and 
information sharing between the executive and the 
deliberator [Gat 1998, 1992; Bonasso, et al, 1997].  This is 
partly realized by the use of a continuous planner combined 
with frequent updates from the executive to the deliberator.  

Two other areas of increased interaction and information 
sharing are provided by the executive’s ability to: (1) make 
decisions on how to execute a task by querying the 
deliberator to determine if a given execution will cause a 
plan failure and (2) consider execution time resource 
knowledge in deciding on task expansions.  These last two 
capabilities are provided by the Execution Time Query 
(ETQ) manager and the Atomic Resource Manager (ARM), 
also depicted in Figure 2.  In the following two sub-sections, 
we describe these components. 

ARM: Atomic Resource Management 
Motivations and Design Goals  

There are certain types of activities that require a resource 
intermittently during their execution.  For example, while a 
rover is navigating, it will occasionally take images to detect 
and avoid obstacles in its path.  Although navigation 
requires the camera, it does not use it continually.  In fact, 
after each image, it can make a rough estimate of when it 
needs the camera again.  This can be done because, given an 
image, the navigation activity determines how far it can 
safely travel before taking another image.  As a result, the 
camera will become available at different times throughout 
the navigation, and it would be nice if other activities could 
take advantage of this.    

In fact, within the context of the Mars Smart Lander 
mission, there is a need for such a capability to enable 
opportunistic traverse science during a long-range traverse.  
Traverse science uses the camera to take images at different 
times during the traverse to look for items of interest.  Like 
navigation, traverse science does not need the camera 
continually throughout the traverse and could use the 
camera when not in use by navigation.  
                                                 
2 Our incremental conflict resolution is performed by an iterative repair 
algorithm [Zweben, et al 1994; Minton, Johnston 1998]. 
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Figure 2: CLEaR Framework Diagram 
In general, we may have several activities that each make 
ntermittent use of a particular resource.  If we knew ahead 
f time when each requires the resource and for how long 
e could use deliberative scheduling techniques to create a 
lan to avoid resource conflicts while executing these 
ctivities.  Unfortunately, for some activities, such as 
avigation, we cannot accurately predict when the resource 
ill be needed.  Furthermore, the accuracy of our prediction 
ill decrease as we attempt to predict uses further in the 

uture.  As a result, an activity may use the resource earlier 
r later than expected, and once the activity has the 
esource, it may require it for a duration different from what 
t had originally anticipated.  

Given these conditions, scheduling such activities is 
hallenging. Previous approaches for dealing with these 
ssues include the following. First, a planner could avoid the 
roblem by refusing to schedule activities concurrently if 
hey require the same resource, regardless of whether or not 
hey only require the resource intermittently.  The downside 
o this is that you are limiting the robot’s capabilities, and in 
ome applications concurrent activities are required to 
omplete a goal.  A second approach would be to form a 
eliberative schedule for these activities based on rough 
stimates on the frequency and duration that each activity 
ill use the resource.  The disadvantage here is that it is 
ery unlikely that during execution the activities will use the 
esources as predicted. This could be handled by performing 
escheduling within the planner as it gets new updates on 
ctual resource usage or by allowing the executive to 
reempt lower priority tasks whenever there is contention 
or the resource.  The former approach is likely to result in 
hrashing within the plan as information changes.  Both 
pproaches are likely to lead to a large number of preempted 
ctivities. A third approach is to create special executive 
ask managers for each combination of activities that may 
eed to run in parallel. Each such manager would be 
esigned to arbitrate resource usage among these particular 
ctivities.   

Instead, we have chosen to deal with these challenges by 
eveloping a resource manager for use within the executive.  
ecause the executive needs to be responsive to unexpected 
hanges, our primary design goal is to keep the resource 
anager fast so that it can quickly respond to requests.  



Therefore, we will favor simpler designs and algorithms to 
reduce computational complexity.  

Because the predictions on when and how long a resource 
will be used is uncertain, the resource manager must be able 
to quickly react so that high priority activities can have 
access to the resource when it is needed.  However, the 
resource manager should make use of predicted information 
when available to try and reduce the number of times it must 
preempt another activity.  Thus, our secondary goal is to 
balance the use of deliberation and reaction, where 
deliberation takes advantage of predicted information and 
reaction to deal with unexpected changes in resource usage.  
Design of ARM  

For our first implementation of ARM, we decided to 
address only atomic resources. An atomic resource can be 
used by at most one task at a time and is either available or 
not available.  For example, a camera can be used by a 
single activity and, therefore, is considered an atomic 
resource.  In contrast, aggregate resources, such as solar 
array power, can be used by several tasks at a time and each 
task can use a different amount of solar power. This makes 
it more difficult to represent and search for reservations. As 
this reasoning is needed, we rely on CASPER’s deliberative 
planning and scheduling capabilities to perform reasoning 
about aggregate resource usage. These decisions are 
generally based on near worst-case estimates of usages.  In 
the next sub-section we describe a method for enabling the 
executive to make reactive decisions about aggregate 
resources with the assistance of the deliberator. 

Figure 3 shows the design of ARM.  For each resource, 
ARM maintains a timeline that keeps track of when the 
resource is in use, along with the task and the priority of the 
task that is using it.  For each reservation on this timeline, 
ARM keeps a ticket, which can be used by tasks to access 
their reservations.  

Before a task can use a resource it must first make a 
request to ARM indicating its priority, the time interval 
within which it would like to start using the resource and the 
duration that the resource will be used.  If ARM can find 
room, it will place a reservation on the timeline and return a 
ticket to the requesting task. Before using the resource the 
task must hold a valid ticket and claim the resource.  When 
the task is finished with the resource or otherwise no longer 
needs the reservation, it sends a release to ARM, which will 
clear out the reservation.  

Although this is the nominal behavior of the system, it is 
unlikely that things will go so smoothly during execution.  
Therefore, ARM is designed to deal with unexpected 
situations.  Unexpected events include: a task requiring a 
resource sooner or later than it anticipated, a task using a 

resource for a shorter or longer duration than it expected 
and a task making a reservation during a time interval in 
which another task already has a reservation.  All of these 
cases are handled by ARM.  The following subsections 
provide more detail on how these issues are resolved.  In 
general, our approach is to associate a task priority with 
each reservation. Whenever there is a conflict for a 
resource, the task with the higher priority wins.  If the tasks 
have equal priority, advantage is given to the task that came 
earlier.   
Requesting a Ticket  

In keeping with our goal of avoiding preemption due to 
resource conflicts, the resource manager will do some 
amount of look ahead when processing requests from tasks.   
Look ahead is facilitated by requiring each task to request a 
ticket before using a resource.  A ticket represents a promise 
between ARM and a task.  When a task requests a ticket, it 
informs ARM of the time in which it would like to start 
using the resource and the duration of that usage.  If ARM 
can find a slot for the request, it will issue a ticket, giving 
the task the right to claim the resource during the specified 
interval. 

However, given uncertainty during execution, the 
manager cannot strictly follow these reservations and must 
accommodate deviations in the actual timing requirements 
of the activities.  The resource manager will have to modify 
the plan, which may involve dropping lower priority 
reservations or preempting the current resource holder. The 
resource manager will attempt to give notice to the affected 
activities so that they can take appropriate action.  

Figure 4 shows the algorithm used for making 
reservations.  When an activity makes a request, it provides 
its priority, the time interval in which it would like to begin 
using the resource and the duration indicating how long it 
intends to use the resource.  Note that the duration is 
independent of the time interval in which it would like to 
start using the resource.  ARM first tries to find an existing 
slot during the requested time interval.  If none are found, it 
will begin removing lower priority reservations until enough 
space is freed or until all the remaining reservations have 
equal or higher priority than the requesting task.  

The algorithm runs in time O(n2) where n is the number 
of currently open reservations (i.e. reservations not in the 
past).  At each priority level, the algorithm must search 
through the reservations at that level and higher looking for 
open space.  In the worst case, each reservation is at a 
different level, requiring n iterations through the loop 
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Figure 3:  Design of ARM 

Request (priority, startTime, endTime, duration)  
 
T = resource timeline 
T’ = working copy of T between startTime 
     and (endTime + duration) 
p = -INFINITY 
While p < priority 
  Remove from T’ all reservations with priority p 
  i = earliest free interval in T’ with size >= 
duration 
  If i exists: 
   Discard from T any reservations during interval i  

    Create new reservation for interval i 
    Return i 
  p = lowest priority in T’   
Return failure 
 

Figure 4:  ARM Reservation Request Algorithm 
 



 

 The reservation algorithm reveals tradeoffs that were 
made when designing ARM.  Our objective was to provide 
fast response to the requesting task without disturbing 
existing reservations.  The quickest algorithm would be to 
first remove all reservations with a lower priority than the 
requesting task and then find a free space.  While fast, this 
could also result in the unnecessary removal of reservations. 
The algorithm we are using is more computationally 
complex. It iterates through the reservation priority levels in 
an attempt to remove lower priority reservations first.  
Although of higher complexity, this algorithm better 
enforces graduated priority levels and only iterates a few 
times in practice.  

We recognize that many further enhancements could be 
made to the scheduling algorithm such as: instead of 
removing reservations when there is no room for a new 
request, it might be possible to relocate them.  Alternatively 
a single higher priority reservation may be removed to 
preserve numerous lower priority reservations.  However, 
we did not incorporate these techniques because (a) they 
would have involved computationally expensive search and 
(b) the benefit would be reduced if a task did not perform as 
predicted, thus forcing repeated changes to the plan.  

Our approach does not consider multiple reservations 
simultaneously.  Some tasks may require the use of several 
resources at the same time, requiring concurrent free 
intervals to be found for each resource.  More complicated 
situations could arise if tasks require resources at temporal 
offset from each other.  This type of scheduling is dealt by 
our deliberator and not ARM.  
Claiming a Resource  

A task may claim the resource at any time during its 
reservation. This addresses the uncertainty a task may have 
about when it needs the resource.  If it is late, it can still 
claim the resource.  However, if it needs the resource 
earlier, it must request a new reservation.  

If another task is still holding the resource (after its 
reservation period), then ARM checks the priority of the 
tasks.  The higher priority task always wins, and ties are 
broken in favor of the current resource owner. This avoids a 
possible preemption. 
Releasing a Ticket  

A task can release a resource at any time, providing extra 
free space on the timeline for new requests.  However, if the 
task requires the resource for longer than allotted, it may 
keep it until a higher priority task makes a claim.  

ETQ: Execution-Time Query 
Even with execution-time atomic resource management, 

situations will arise where a task requires a different amount 
of a resource or time than was scheduled.  For example, 
adverse soil conditions may make it more difficult for a 
rover to dig, thus using more energy and time to complete 
the task. To enable reactive reasoning about aggregate 
resources and time, we have developed an Execution–Time 
Query (ETQ) mechanism to enable the executive to safely 
deviate from the constraints laid out in the plan by the 
deliberator. 

One approach to dealing with this problem is to allow the 
task to continue operation and use more of the resource.  As 
resource and time updates are made, the deliberator will 
detect problems that this extra resource use will have on the 
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Figure 5: CLEaR Concept Diagram 
lan.  For some types of resources, this approach will be 
ine.  If an imaging task uses extra RAM, and the scheduling 
unctionality detects that this will cause a problem, it can 
ecide to discard some of the collected data.  

Unfortunately, other types of resources cannot be so 
asily replenished, and this approach could lead to 
atastrophic failures.  If the rover uses extra energy, the 
cheduling functionality detects a problem too late and the 
nergy is already gone.  This could prevent the rover from 
ompleting a mission critical task such as communicating 
ith Earth.  Sometimes it is better to ask for permission than 

t is to ask for forgiveness. 
To deal with this challenge, our framework supports a 

uery system that enables the executive to ask for 
ermission before exceeding a resource limitation. This 
apability provides global consideration of resource and 
ime usage during execution.  When a monitor detects that 
he resource will be over-subscribed, instead of just 
ompleting or failing the task, it can query the deliberator.  
he executing task queries the deliberator indicating how 
uch more of the resource or time the task would like to 

se.  The deliberator then does a quick check to determine if 
he new resource usage would cause any conflicts, by 
lacing this new expected use into the plan and propagating 
t forward.  This is done similarly to how execution updates 
re handled.  If no conflicts result, then the query request, 
ermission is granted and the task can continue to execute 
ithin the confines of this new resource or time 

onstraint/restriction.  If this query propagation creates any 
onflicts then the projected update is backed out of the plan 
nd the request is rejected. As we will see in the scenario, 
here are situations when exceeding the resource allotment is 
he desired behavior.  For that reason, the framework does 
ot require that execution-time resource query be used. 
nstead it is left to the knowledge engineer to decide which 
asks should “ask for permission” or “ask for forgiveness”. 

Similar to the design of the execution-time resource 
anagement functionality, there are alternative designs for 

his query capability that would provide more functionality 
t higher computationally expense. The deliberator could 
heck if the conflicts resulting from a changed resource 
sage could be adequately repaired, and if so, give 
ermission to the task. 

urrent Status 
n our current framework CASPER creates abstract 
ommand sequences and executes those sequences by 
ranslating the CASPER planning activities into TDL task-
ree goal nodes, which are then further expanded by TDL.  
n Figure 5 we graphically depict levels of responsibility 
etween deliberative and reactive decision-making as a 
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Figure 6: Scenario Maps for a Geological Science Location 
nction of time.  At the current time, all decision-making 
th respect to the executing tasks are performed reactively. 
 the plan is projected forward, the deliberator takes on an 

creasing role in decision-making. 
By enabling the long-term deliberator and the short-term 
active executive to share information on a more frequent 
sis, the system can:  (1) reduce the need to replan, (2) 
tect the need to replan earlier and (3) when necessary 
plan before entering a failed state while continuing to 
ecute other valid portions of the plan.  

Scenario Examples: 
e are continuing to develop both our concept of unified 
anning and execution along with the implementation of 
at concept within the CLEaR system.  To assist in this 
ocess, we are developing rover mission scenarios 
nsistent with the proposed Mars Smart Lander mission, 
scribed in the Mars Smart Lander Rover scenario section, 
r use in testing and validating our system.  We are 
rforming tests in simulation and on the Rocky7 and 
cky8 research rovers in the JPL Mars Yard. 
Figure 1 provides a high level view of the complete 
enario, which includes two long-range traverses to three 
ological science locations and several science data 
thering goals at those locations.  Figure 6 contains a blow-
 view of one potential geological science location.  The 
ound operations team provides the rover with eight 
ience targets within this site.  These targets consist of: 
ur images, two spectrometer readings, and two digs each 
different locations.  The ground team assigns a priority to 
ch target, which is used in the science return optimization 
orithm of the deliberator and ARM [Rabideau, et al, 
00].   
Our description of the scenario will begin with events that 
cur while the rover is completing tasks at the geological 
ience location.  We begin with this portion of the scenario 
 these techniques are a logical extension to those of 
evious work in integrated planning and execution [Gat 
98, 1992; Bonasso, et al, 1997].  We will then move on to 

events that occur during the long-range traverse between 
science locations.  During this section we will describe how 
these new capabilities, namely ARM and ETQ, increase the 
rover’s ability to deal uncertain events. 

We decided to turn the execution-time query facility off 
while the rover was in the geological science site.  This was 
done because each of the goals in this part of the scenario is 
part of the rover’s primary mission.  If it requires extra 
resources to complete a task, it should do so, and the 
planner will have to repair the plan as best it can to achieve 
future goals.  During the long-range traverse, in the second 
part of the scenario, we will use execution-time resource 
queries to prevent opportunistic science from interfering 
with the rover’s primary goals. 

Part 1:  Within the Geological Science Location 
The system begins by employing a generic Traveling 
Salesman Problem solver to identify an initial sequence 
(tour) for visiting each of the science targets. The sequence 
is then expanded to include all of the planner level activities 
required to carry out that tour. During the generation of the 
command sequence, all of the resource constraints are 
maintained.  For our current scenario this means that the 
rover’s energy and memory resource profiles must be 
maintained within the operations constraints.  For energy 
this requires that the projected and actual used energy level 
must not drop below the prescribed margin levels.  In part 
this is to ensure that there is enough energy available for the 
communications activities at the end of each day and also to 
ensure that there is enough energy stored in the batteries for 
overnight operations.  For memory the system must balance 
the memory buffer capacity to maximize science return and 
ensure the availability of memory storage space for future 
higher priority science observations.  

The dashed line in Figure 6-A indicates the initial planned 
sequence that the rover will take to visit the science targets.  
However, things will not go as planned during execution 
and the plan will have to be modified, as shown by the solid 
line in Figure 6-B.  The following section highlights some of 
the unexpected events that occurred during execution and 



 

the challenges these events posed when coupled with the 
time and resource constraints imposed by the mission. 
Deliberator 

The first problem with the plan is detected before 
execution begins.  The rover has been asked to collect more 
science data than it has room to store in memory.  The 
deliberative scheduling functionality is able to detect this 
problem and discards low priority science targets until 
enough space is available for the remaining targets.  In the 
example, image target 1 from Figure 6-A is thrown out, and 
a new path for visiting the remaining targets is generated. 
Execution-Time Plan Manager 

During execution, other resource usage issues arise.  One 
of the challenges in execution monitoring for a system under 
time and resource constraints is that it is not enough to 
detect whether or not an action resulted in success.  One 
must also monitor how the activity affected the rover’s 
resources and how much time it took.  For example, in 
Figure 6-B, the image task at target 4 and the dig at target 5 
were successful in that the main objective of the task was 
completed.  However, they also resulted in the use of more 
resource than was anticipated.  The image task required an 
excessive amount of memory and the dig used up too much 
energy. 

The Execution-Time Plan Manager (Figure 2) enables the 
rover to deal with these problems.  The Executive 
continuously provides updates on the state of each resource. 
After each task is completed, the continuous planner notices 
that there will be a deficiency in one or more resources.  For 
example, after the image is taken, the system realizes that 
there will be insufficient memory to complete the other 
science goals.  In each case, the deliberator looks for low 
priority tasks to drop, just as it did during initial plan 
generation. 

Similar behavior occurs when a task requires an 
unexpected amount of time.  Like the resource constraints, 
tight time constraints require that the rover keep track of 
how much time a task is taking so that it can avoid missing 
future deadlines.  For example, as the rover moves from 
target 2 to target 3, its obstacle detection behavior must 
avoid unexpected rocks that did not show up in the initial 
map the rover was given.  If the rover spends too much time 
trying to reach this target, it may miss other deadlines, such 
as the communication opportunity with Earth. 

Again, the continuous scheduling functionality of our 
framework addresses this challenge.  Just as each task 
includes monitors on resource usage, some tasks also 
include monitors to track the rover’s progress over time.  In 
this example, the monitor realizes that, given the rover’s 
position, it will not be able to complete the task in the 
allotted time.  At this point the continuous scheduling 
functionality takes into account the latest information about 
obstacles in the area and modifies the plan accordingly.  As 
in the previous cases, it might be necessary to drop certain 
tasks to make up time.  However, in this case, it turns out 
that the rover can visit the targets in a different sequence 
and still have enough time to make the communication 
deadline. 

Part 2:  Long-range Traverse Between Geological 
Science Locations 
After the rover completes the tasks in Figure 6, it must 
proceed to the next geological science location in Figure 1.  
This portion of the scenario will highlight benefits of 
performing execution-time resource management to 
schedule concurrent activities that make intermittent use of 
the same resource.  We will also show how the execution-
time query facility can be used to prevent a task from 
interfering with a plan when it requires more of a resource. 
ARM: Atomic Resource Manager 

The benefits of execution-time resource management are 
highlighted during long-range traverses.  Recall from the 
Mars Smart Lander (MSL) reference mission that we would 
like to perform opportunistic science during these traverses.  
Although both the traverse and traverse science tasks 
require the use of the camera, neither requires it 
continuously. These tasks can be scheduled concurrently. 
Due to uncertainty in execution, however, it is difficult to 
predict when and for how long each task will require use of 
the camera. 

To test our execution-time resource scheduling capability, 
we created a simulation to model the camera usage behavior 
of Gestalt, the navigation software that will be used on the 
2003 Mars Exploration Rover (MER) mission.  Whenever 
Gestalt takes an image, it determines how far the rover can 
safely travel before it must take the next image.  With an 
estimate of the rover's velocity, we make a prediction of 
when the traverse will require the camera again.  A 
corresponding request is made to the resource manager for 
the interval that the camera will be needed.  

Meanwhile, our simulation of opportunistic science tries 
to take images as often as it can.  Before using the camera, it 
must first make a request of ARM specifying how long it 
will need the camera.  As stated in the MSL reference 
mission description, opportunistic science should not 
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interfere with other rover activities; thus, we give 
opportunistic science a lower priority than traverse tasks.  

Figure 7 illustrates the events that occur during a typical 
run.  The figure depicts the reservations that are placed on 
the camera resource timeline during the execution of the 
traverse and opportunistic science tasks.  Each reservation is 
numbered to indicate the order in which it was placed on the 
timeline.  The time units in the x-axis are in seconds and 
mark the times for the various reservations.  The upward 
arrow denotes the current point in time.  

At the start of the scenario, Figure 7 (A), the traverse task 
has made a reservation that will begin at time 16 and last for 
5 seconds, until time 21.  Next, opportunistic science makes 
a request for the camera for sometime between time point 1 
and time point 31.  The executive resource manager finds 
space for the reservation starting at time 1.  As time elapses, 
the science task completes its first use of the camera, places 
another request and uses the camera for a second time.  At 
time point 12 in (C), opportunistic science requests the 
camera, however it cannot be given the earliest slot because 
its duration would conflict with traverse’s reservation.  
Therefore, it is given a reservation that begins at time 21. In 
the absence of execution-time resource management, 
opportunistic science would take the earlier slot and later be 
preempted by traverse. This step demonstrates how ARM 
protects against preemption.  Instead, opportunistic science 
is scheduled at a time when the resource is predicted to be 
free.  

In (D) things do not go as planned: traverse has taken 
longer than expected to claim the resource.  The behavior of 
the system at this point depends on how traverse interacts 
with the resource manager.  If traverse releases its current 
reservation and makes a new one to start immediately, the 
resource manager will notify the following science task that 
it has been superseded.  

However, in the example scenario, the traverse task does 
not release the resource and instead claims it and then holds 
on to it past its scheduled reservation.  At time point 21, 
opportunistic science attempts to claim the resource but is 
denied in favor of the higher priority traverse.  Science then 
makes a new request and is given a reservation starting at 
time slot 22.  Here, no preemption was necessary to resolve 
the conflict, as the science task was not started.  

There will be cases when preemption cannot be avoided.  
An example occurs in (F) when the science task has been 
initiated, but then the traverse requires the use of the camera 
beginning at time 26.  Because traverse has higher priority, 
the resource manager gives it a reservation and preempts the 
opportunistic science task. (G) Shows the final state of the 
timeline after opportunistic science has been given a new 
reservation.  
ETQ: Execution-Time Query 

As stated earlier, opportunistic science should never 
interfere with other rover activities.  Therefore, for the 
traverse portion of the scenario, we employ the execution-
time query (ETQ) capability to enable the task manager for 
opportunistic science to ask permission before using more 
of a resource than it was prescribed by the plan. 

In our scenario, the deliberator allocates a certain amount 
of memory for use by opportunistic science based on a 
rough estimate of how many images it will take and how 
much RAM the images will require.  If, during execution, 
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Figure 8: Successful and failed science image attempts with  
scheduling and non-scheduling versions of ARM 
opportunistic science is able to take more images than 
predicted, or the images require more memory than 
anticipated, the task manager will detect that the task has 
used up the memory it has allocated.  At this point, if it 
would like to take another image, it will use ETQ to see if it 
can use more memory without disrupting the plan.  In its 
query it states the amount of additional memory it would 
like to use.  If the scheduling facility determines that this 
extra usage will not cause conflicts, it will give 
opportunistic science the permission to take the image.  
However, opportunistic science will have to check again if it 
needs extra memory beyond this new allotment.  If the 
additional use would lead to conflicts, opportunistic science 
would be denied and would have to stop taking images. 

Note that ARM is unable to perform this function because 
it does not have the long-term picture of the plan that the 
deliberator has.  Further because ARM currently only 
addresses atomic resources, it is unaware of future memory 
requirements and, thus, does not know whether or not a task 
using extra memory now will cause problems in the future. 

Evaluation of ARM 
We ran a series of tests to evaluate the impact ARM has 

on the execution of concurrent activities that make 
intermittent use of a shared resource.  Our main objective 
with the evaluation was to determine if there is any benefit 
to using the scheduling capability of ARM.  Our intention in 
designing this capability was to allow ARM to use 
predictions about resource usage to do simple form of 
scheduling in an attempt to avoid preempting tasks.  The 
study looks at the impact of ARM's scheduling on task 
preemption.  

Methodology:  
Our evaluation scenario is based on the opportunistic 

traverse science task described earlier.  In our example, the 
objective of traverse science is to take as many images as it 
can during a long range traverse.  Before taking an image, it 
must first request the resource from ARM stating when it 
would like to use the camera and for how long.  When 
making the request, the science task tries to get the resource 
as soon as possible but is willing to accept it any time until 
the end of the traverse.  We used a duration of 4 seconds.  



 

The traverse task uses the camera at different intervals to 
look for obstacles in the path.  Based on the images it will 
plan a path that is typically 35 centimeters in length.  It does 
not use the camera while following that path and thus it can 
be made available to other tasks, in this case the science 
task.  After each image is taken, the traverse task makes a 
prediction for when it will need the camera again, based on 
how fast it moves and the length of the planned path and 
requests the resource from ARM for that predicted time.  
For the purpose of evaluation we picked nominal values of 
14 seconds between camera uses and 4 seconds for using the 
camera.    

To test the performance of ARM under uncertainty we 
included noise with these numbers.  For each run we select a 
different probability p.  With probability 1-p, the predicted 
and actual resource use will be the times stated above.  With 
probability p, the predicted duration and time before the 
next camera use will be drawn randomly from 2-6 seconds 
for the duration of use and 9-19 seconds for the time before 
the next use.  Because the predicted camera use will not 
always match the actual use (e.g. it may take longer to travel 
the planned distance) we also vary the actual use.  Again, 
with probability 1-p, the actual use will match the predicted 
use.  With probability p we randomly pick the duration and 
time before the next camera use from the same intervals 
used for the predicted use.  

For priorities, we gave the traverse task a higher priority 
than the science task.  

We ran two versions of the system Schedule and No-
Schedule.  The Schedule version works as described above 
using predicted resource usage information to avoid 
preemption.  The No-Schedule version does not take 
resource reservations.  Instead it simply give the resource to 
the higher priority tasks whenever it requests it.  

Results:  
Figure 8 contains the results from running each system at 

5 different noise levels.  Each entry in the table indicates the 
number of successful traverse science images taken along 
with the number of failed science images.  In each case, a 
failed science image represents a preempted science task.  
Note that because the traverse task had a higher priority, it 
was never preempted.  

Discussion:  
Overall, these results show that the scheduling capability 

of ARM is effective in avoiding the preemption of tasks.  
Without any noise, the schedule version worked perfectly 
and did not preempt a single task. At higher levels of noise, 
a few tasks were preempted but much fewer than the No-
Schedule version at the same noise levels.  Because the 
Schedule version is a bit more conservative than the No-
Schedule version, there were slightly fewer successful 
images taken.  However, considering that a failed image 
corresponds to wasted power, the cost of a small number of 
missed images is likely to be much smaller than the cost of 
wasted power. 

Related work  
There have been many techniques for combining 
deliberative and reactive reasoning into hybrid architectures 

for robotic applications. These architectures have been 
successfully applied to many dynamic and uncertain real-
world domains including manufacturing [Lyons and 
Hendriks, 1995], military operations [Arkin, 1997; Myers, 
1998] and space exploration [Gat, 1992; Washington, et al, 
1999; Pell, et al, 1997].  
 [Arkin 1998] and [Knight, et al, 2001] contain surveys of 
many hybrid architectures.  Only a few of these architectures 
were designed with resource constraints and tight deadlines 
in mind.  Consequently, there has been little work in 
addressing these issues in dynamic, uncertain environments.  
Without some facility for reasoning about resources and 
deadlines, there is a danger that the robot will not detect 
problems in the plan until it is too late to do anything about 
it.  
 However, there are some architectures that are capable of 
reasoning about resources and deadlines.  CIRCA (Musliner 
et al. 1993) contains a scheduler that enforces hard real-time 
constraints for a mobile robot navigation domains.  
However, rather than repair the schedule, it returns failure if 
it cannot meet the hard real-time constraints.  CPEF [Myers, 
1998] uses the SIPE-2 [Wilkins, 1988] planning system 
which is capable of resource management.  CPEF is unique 
in its ability to perform indirect commanding, in which the 
system supervises a collection of entities executing the plan 
along with its ability to accept user advice for plan 
development.  [Washington, et al, 1999] present a system 
that can perform resource management that is also applied 
to the Mars exploration domain.  To deal with uncertain 
resource and time usage, their system precompiles resource 
envelopes to provide task management flexibility to the 
executive. The system also performs contingency planning 
to deal with the set of most probable plan deviations.  
 CLEaR extends the capabilities of the previous systems 
by providing execution-time atomic resource management 
as part of the reactive reasoning.  The CLEaR framework 
also provides the reactive reasoning components with 
limited access to the global view of the plan through the 
execution-time query facility.  
 With respect to individual components of CLEaR, ARM 
shares some similarities with the resource manager in [Gat 
2000].  In particular, both components represent execution-
time resource managers.  However, Gat was concerned with 
providing hard-real-time guarantees, and enforcing resource 
reservations through gate keeping access to the resources.  
In contrast, we settled for a soft-real-time system that, 
through the use of limited search, can do a small amount of 
look-ahead to avoid task preemption. Thus ARM supports 
execution-time decision-making, while [Gat 2000] provides 
execution-time resource safety. 

Future work 
Our future work will involve the use of different types of 
execution-time resource management (including aggregate 
resources), means of better utilizing path-planning 
algorithms in conjunction with planning and execution, 
means of performing quick local plan repairs while 
minimizing global plan risk, and finding other ways of 
applying our unified planning and execution framework to 
improve mission operations, increase science return and 
enable more efficient long-range traverses. 



We are also applying the CLEaR system to ground station 
automation for NASA’s Deep Space Network (DSN) [DSN 
1994; Fisher, et al, 1998, 2000].  In this domain area 
CLEaR is used in a similar fashion to generate command 
sequences for commanding the ground station 
communications subsystems to communicate with assets in 
deep space, whether that be Earth orbiters, spacecraft in 
orbit around Mars, on the surface of Mars, or as far out as 
Voyager I & II now beyond the edge of our solar system.  
The CLEaR software has also been licensed by Lockheed 
Martin Skunk Works division for use in automating the pilot 
functionality of Unmanned Air Vehicles (UAVs). 

Conclusions 
 Resource constraints and tight deadlines pose challenges 
beyond those found in other uncertain robotic environments.  
In these applications, a task may require a different amount 
of time or resource than anticipated, potentially leading to 
execution failure at future points in the plan.  We have 
developed the CLEaR framework to address these 
challenges.  CLEaR extends previous work in hybrid 
deliberative/reactive architectures in three ways.  A 
continuous planning and scheduling system allows the robot 
to identify and repair problems before they occur, while 
continuing to perform other tasks. ARM provides execution-
time atomic resource management enabling the scheduling 
of concurrent tasks that require intermittent use of the same 
resource, while avoiding the need for task preemption.  
Finally, ETQ provides the executive with access to the 
global plan perspective needed to prevent tasks from 
deviating from time and resource allocations in situations 
when doing so will lead to conflicts.  This framework will 
increase the effectiveness of robots in many real-world 
applications, including the space exploration mission 
presented in our case study. 
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